Truncation levels in homotopy type theory

نویسنده

  • Nicolai Kraus
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the complexities of polymorphic stream equation systems, isomorphism of finitary inductive types, and higher homotopies in univalent universes

This thesis is composed of three separate parts. The first part deals with definability and productivity issues of equational systems defining polymorphic stream functions. The main result consists of showing such systems composed of only unary stream functions complete with respect to specifying computable unary polymorphic stream functions. The second part deals with syntactic and semantic no...

متن کامل

Impredicative Encodings of (Higher) Inductive Types

Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant η-equalities and consequently do not admit dependent eliminators. To recover η and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then ex...

متن کامل

The General Universal Property of the Propositional Truncation

In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Σ, Π, and identity types), we define the type of coherently constant functions A ω −→ B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over ωop. Our main result is that, if the category further has pr...

متن کامل

Idempotents in intensional type theory

We study idempotents in intensional Martin-Löf type theory, and in particular the question of when and whether they split. We show that in the presence of propositional truncation and Voevodsky’s univalence axiom, there exist idempotents that do not split; thus in plain MLTT not all idempotents can be proven to split. On the other hand, assuming only function extensionality, an idempotent can b...

متن کامل

Sets in homotopy type theory

Homotopy Type Theory may be seen as an internal language for the ∞category of weak ∞-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞-groupoids with contractible connected components, and thereby it includes (much of)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015